SMALL ZEROS OF QUADRATIC FORMS OVER NUMBER FIELDS. II

JEFFREY D. VAALER

ABSTRACT. Let F be a nontrivial quadratic form in N variables with coefficients in a number field k and let $\mathcal Z$ be a subspace of k^N of dimension M, $1 \le M \le N$. If F restricted to $\mathcal Z$ vanishes on a subspace of dimension L, $1 \le L < M$, and if the rank of F restricted to $\mathcal Z$ is greater than M-L, then we show that F must vanish on M-L+1 distinct subspaces $\mathscr C_0$, $\mathscr Z_1,\ldots,\mathscr Z_{M-L}$ in $\mathcal Z$ each of which has dimension L. Moreover, we show that for each pair $\mathscr C_0$, $\mathscr Z_1$, $1 \le l \le M-L$, the product of their heights $H(\mathscr C_0)H(\mathscr Z_1)$ is relatively small. Our results generalize recent work of Schlickewei and Schmidt.

1. Introduction

Let

(1.1)
$$F(\mathbf{x}, \mathbf{y}) = \sum_{m=1}^{N} \sum_{n=1}^{N} \varphi_{mn} y_m x_n$$

be a symmetric bilinear form with coefficients $\varphi_{mn}=\varphi_{nm}$ in an algebraic number field k. We write $\Phi=(\varphi_{mn})$ for the associated $N\times N$ matrix and $F(\mathbf{x})=F(\mathbf{x},\mathbf{x})$ for the associated quadratic form. As in our earlier paper [14] we will consider F restricted to a fixed subspace $\mathcal{Z}\subseteq k^N$ of dimension M, $1\leq M\leq N$, and define

$$\mathcal{Z}^{(0)} = \{ \mathbf{z} \in \mathcal{Z} : F(\mathbf{z}) = 0 \}.$$

A basic problem in this situation is to show that if $\mathcal{Z}^{(0)}$ is not trivial then it necessarily contains vectors or subspaces of small height. Beginning with a result of Cassels [3, 4], the papers [1, 5-10, 12-15], are all directed at this type of problem. In case $k = \mathbb{Q}$ and M = N Schlickewei and Schmidt [10] have recently proved a theorem which includes most of the previous results. Our purpose in the present paper is to generalize the work of Schlickewei and Schmidt to an arbitrary number field k and to the case where \mathcal{Z} may be a proper subspace of k^N . As we have already noted in [14], the introduction of the subspace \mathcal{Z} is equivalent to considering the simultaneous zeros of the

Received by the editors January 21, 1988.

1980 Mathematics Subject Classification (1985 Revision). Primary 11D09; Secondary 11H55. Research supported by a grant from the National Science Foundation, DMS-8701396.

quadratic form F and a system of N-M independent linear forms. If A is an $(N-M)\times N$ matrix over k with $\operatorname{rank}(A)=N-M$ and

$$\mathcal{Z} = \{ \mathbf{x} \in k^N \colon A\mathbf{x} = \mathbf{0} \},\,$$

then by a basic duality principle (equation (2.6) of [14]) the subspace \mathcal{Z} and the matrix A have the same height. For this reason all of our results which we state for a quadratic form F restricted to \mathcal{Z} have obvious analogs for the set of simultaneous solutions in k^N of $F(\mathbf{x}) = 0$ and $A\mathbf{x} = \mathbf{0}$.

We suppose that the number field k has degree d over \mathbb{Q} . Our notation for places, completions of k, normalized absolute values, heights and measures will be identical to that which was already described in [14, §2]. Also, we will assume that F restricted to \mathcal{Z} has rank r. Our main result which generalizes Theorem 1 in [10] is as follows.

Theorem 1. Suppose that $\mathcal{Z}^{(0)}$ contains an L-dimensional subspace, $1 \leq L < M$, and F restricted to \mathcal{Z} has rank r > M - L. Then there exist M - L + 1 distinct L-dimensional subspaces \mathscr{X}_0 , \mathscr{X}_1 , \mathscr{X}_2 , ..., \mathscr{X}_{M-L} in $\mathscr{Z}^{(0)}$ with the following properties:

- (i) for each l = 1, 2, ..., M-L the subspace $\mathcal{Z}_0 \cap \mathcal{Z}_l$ has dimension L-1;
- (ii) the union $\mathscr{X}_0 \cup \mathscr{X}_1 \cup \cdots \cup \mathscr{X}_{M-L}$ spans the subspace \mathscr{Z} ;
- (iii) for each l = 1, 2, ..., M L,

$$(1.2) \quad H(\mathcal{Z}_0)^2 \leq H(\mathcal{Z}_0)H(\mathcal{Z}_1) \leq \left\{2c_k(M-L)^2\mathcal{H}(\Phi)\right\}^{M-L}\left\{2c_k(1)H(\mathcal{Z})\right\}^2.$$

(For each positive integer n, $c_k(n)$ is a field constant defined in [14, §2] and in (2.2) below.)

In our previous result [14, Theorem 1] we made no assumption concerning the rank of F restricted to \mathcal{Z} but instead we assumed that the integer L was maximal. That is, we assumed that L was the largest integer such that $\mathcal{Z}^{(0)}$ contains a subspace of dimension L. We note that in the present paper we are not assuming that L is maximal. Of course $\mathcal{Z}^{(0)}$ must contain the subspace

$$\mathcal{Z}^{\perp} = \{ \mathbf{z} \in \mathcal{Z} : F(\zeta, \mathbf{z}) = 0 \text{ for all } \zeta \in \mathcal{Z} \},$$

and $\dim(\mathcal{Z}^{\perp}) = M - r$. Thus our hypothesis in Theorem 1 concerning the rank of F restricted to \mathcal{Z} could be stated this way: we assume that $\mathcal{Z}^{(0)}$ contains a subspace of dimension L with $L > \dim(\mathcal{Z}^{\perp})$. It turns out that the method used to prove Theorem 1 also provides a bound on the height of the subspace \mathcal{Z}^{\perp} .

Theorem 2. If $1 \le r < M$ then

(1.3)
$$H(\mathcal{Z}^{\perp}) \leq c_k(r)' \mathcal{H}(\Phi)^{r/2} H(\mathcal{Z}).$$

Suppose that in Theorem 1 the quadratic form F restricted to \mathcal{Z} has rank r = M. Then we may take L = 1. We find that if F has a nontrivial zero

in $\mathcal Z$, then there is a basis $\{\mathbf x_0, \mathbf x_1, \dots, \mathbf x_{M-1}\}$ of $\mathcal Z$ such that $F(\mathbf x_m) = 0$, $m = 0, 1, \dots, M-1$, and

(1.4)
$$H(\mathbf{x}_0)H(\mathbf{x}_l) \le \left\{2c_k(M-1)^2 \mathcal{H}(\Phi)\right\}^{M-1} \left\{2c_k(1)H(\mathcal{Z})\right\}^2,$$

for l = 1, 2, ..., M - 1. Obviously (1.4) implies that

(1.5)
$$H(\mathbf{x}_0)^{M-1}H(\mathbf{x}_1)H(\mathbf{x}_2)\cdots H(\mathbf{x}_{M-1}) \\ \leq \left\{2c_k(M-1)^2\mathcal{H}(\Phi)\right\}^{(M-1)^2}\left\{2c_k(1)H(\mathcal{Z})\right\}^{2(M-1)}.$$

The bounds (1.4) and (1.5) generalize results of Schulze-Pillot [13, Theorem 2] and Chalk [5].

If F and \mathcal{Z} satisfy the hypotheses in Theorem 1 then $\mathcal{Z}^{(0)}$ contains the L-dimensional subspace \mathscr{U}_0 , and the height $H(\mathscr{U}_0)$ is bounded by (1.2). In fact the slightly sharper bound

(1.6)
$$H(\mathcal{X}_0) \le \left\{ 2c_k (M - L)^2 \mathcal{X}(\Phi) \right\}^{(M - L)/2} H(\mathcal{Z})$$

follows immediately from Theorem 4 and equation (5.11) below. Theorem 2 and (1.6) provide a sharper and more general formulation of our previous result [14, Theorem 1].

We wish to thank Professor H. P. Schlickewei for helpful discussions on the subject of this paper.

2. Preliminary Lemmas

If v is a place of k we write k_v for the completion of k at v. Let $\mathscr{A}\subseteq (k)^N$ be a subspace of dimension L, $1\leq L< N$, and let $\mathscr{A}_v\subseteq (k_v)^N$ be the completion of \mathscr{A} in $(k_v)^N$. We shall make frequent use of the $N\times N$ projection matrices $P_v=P_v(\mathscr{A}_v)$ which were defined in [14, §4]. Here we simply summarize the main results concerning $P_v(\mathscr{A}_v)$ which we will need. Complete proofs and further details can be found in [14].

At each place v the matrix P_v is a projection operator in the usual sense:

$$P_{v}\mathbf{x} \in \mathscr{A}_{v}$$
 for all $\mathbf{x} \in (k_{v})^{N}$,

and

$$P_v \mathbf{x} = \mathbf{x}$$
 for all $\mathbf{x} \in \mathscr{A}_v$.

Let $\mathbf{b} \in (k)^N \setminus \mathscr{A}$ so that

$$\mathscr{B} = \operatorname{span}_{k} \{ \mathscr{A}, \mathbf{b} \}$$

is a subspace of dimension L+1. The height of the subspaces $\mathscr A$ and $\mathscr B$ are related by the identity

$$(2.1) H(\mathscr{B}) = H(\mathscr{A}) \prod_{v} H_v \{ (1_N - P_v) \mathbf{b} \}.$$

This follows from [14, Lemma 4].

If $\mathscr{A} \subseteq k^N$ we shall sometimes simplify our notation and write $P_v(\mathscr{A})$ for projection onto the completion of \mathscr{A} in $(k_n)^N$.

Next we require a lemma whose proof uses methods from geometry of numbers over adèle spaces. The relevant definitions concerning this subject are contained in [2, pp. 16-18]. We write $k_{\rm A}$ for the adèle ring of the number field k and if v is a finite place of k then

$$O_n = \{x \in k_n : |x|_n \le 1\}$$

denotes the maximal compact subring of k_v . Since the additive group of k_v is locally compact we may select a normalized Haar measure β_v on k_v as follows:

- (i) If $v \mid p$, where p is a (finite) rational prime, we require that $\beta_v(O_v) = |\mathcal{D}_v|_v^{d/2}$. Here \mathcal{D}_v is the local different of k at v.
- (ii) If $k_v = \mathbb{R}$ then β_v is ordinary Lebesgue measure on \mathbb{R} .
- (iii) If $k_v = \mathbb{C}$ then β_v is Lebesgue measure on the complex plane multiplied by 2.

The product measure $\beta = \prod_v \beta_v$ then induces a normalized Haar measure (also denoted by β) on k_A . If $(k_A)^N$ is an N-fold product of adèle spaces we write V for the product Haar measure β^N on $(k_A)^N$.

At each infinite place v we define a positive real number $r_n(N)$ so that

$$\beta_v^N(\{\mathbf{u} \in (k_v)^N : \|\mathbf{u}\|_v < r_v(N)\}) = 1.$$

The exact value of $r_v(N)$ is given in [14, §2]. We also define

(2.2)
$$c_k(N) = \left\{ 2|\Delta_k|^{1/2d} \prod_{v \mid \infty} (r_v(N))^{d_v/d} \right\} ,$$

where Δ_k is the discriminant of k and $d_v = [k_v : \mathbb{Q}_v]$ is the local degree. The quantity $c_k(N)$ will occur as a field constant.

Now suppose that A_v is an $N \times M$ matrix over k_v with

$$\operatorname{rank}(A_v) = M \leq N.$$

Let $\xi_v \neq \mathbf{0}$ be a vector in $(k_v)^N$. If $v \mid \infty$ we set

$$S_n = \{ \mathbf{u} \in (k_n)^M : ||A_n \mathbf{u}||_n < ||\xi_n||_n \}.$$

It follows easily that

$$\boldsymbol{\beta}_{\boldsymbol{v}}^{\boldsymbol{M}}(\boldsymbol{S}_{\boldsymbol{v}}) = \boldsymbol{r}_{\boldsymbol{v}}(\boldsymbol{M})^{-\boldsymbol{M}\boldsymbol{d}_{\boldsymbol{v}}} \|\boldsymbol{\xi}\|_{\boldsymbol{v}}^{\boldsymbol{M}\boldsymbol{d}_{\boldsymbol{v}}} \boldsymbol{H}_{\boldsymbol{v}}(\boldsymbol{A}_{\boldsymbol{v}})^{-\boldsymbol{d}}.$$

If $v \nmid \infty$ we write

$$S_n = \{ \mathbf{u} \in (k_n)^M : ||A_n \mathbf{u}||_n \le ||\xi_n||_n \}.$$

By using the v-adic cube slicing identity, which is (4.8) and (4.9) of [2], the Haar measure of S_n is given by

$$\boldsymbol{\beta}_{\boldsymbol{v}}^{M}(\boldsymbol{S}_{\boldsymbol{v}}) = |\mathcal{D}_{\boldsymbol{v}}|_{\boldsymbol{v}}^{Md/2} \|\boldsymbol{\xi}_{\boldsymbol{v}}\|_{\boldsymbol{v}}^{Md_{\boldsymbol{v}}} \boldsymbol{H}_{\boldsymbol{v}}(\boldsymbol{A}_{\boldsymbol{v}})^{-d}.$$

If we assume that $S_v = (O_v)^M$ at almost all finite places v, then the set

$$\mathscr{S} = \prod_v S_v$$

is a subset of the M-fold product $(k_A)^M$. Hence the Haar measure of $\mathcal S$ is given by (2.3)

$$V(\mathcal{S}) = \prod_{v} \beta_{v}^{M}(S_{v}) = \left|\Delta_{k}\right|^{-M/2} \left\{\prod_{v} \left|\xi_{v}\right|_{v}^{M} H_{v}(A_{v})^{-1}\right\}^{d} \left\{\prod_{v \mid \infty} r_{v}(M)^{-Md_{v}}\right\}.$$

(In (2.3) we have used the identity

$$\prod_{v \nmid \infty} |\mathscr{D}_v|_v^{d/2} = |\Delta_k|^{-1/2}.)$$

If $0 < \lambda_1 \le \lambda_2 \le \cdots \le \lambda_M < \infty$ denote the successive minima of $\mathcal S$ then by the adèlic form of Minkowski's second theorem (this is Theorem 3 of [2]) we have

$$(\lambda_1 \lambda_2 \cdots \lambda_M)^d V(\mathcal{S}) \leq 2^{dM}$$
.

Using (2.3) this may be written as

$$(2.4) (\lambda_1 \lambda_2 \cdots \lambda_M) \le c_k(M)^M \left(\prod_v |\boldsymbol{\xi}_v|_v^{-M} H_v(A_v) \right).$$

To simplify the statement of the following lemma we write

$$G(\mathbf{x}) = \prod_v H_v\{(\mathbf{1}_N - P_v)\mathbf{x}\}$$

for $x \in k$ and $P_v = P_v(\mathscr{A}_v)$.

Lemma 3. Let ξ and ζ be linearly independent vectors in $(k)^N \setminus \mathscr{A}$. Then there exists a scalar $\alpha \neq 0$ in k such that

$$G(\alpha \pmb{\zeta} + \pmb{\xi}) \leq 2c_k(1) \max\{G(\pmb{\zeta}), G(\pmb{\xi})\}.$$

Proof. We use the inequality (2.4) with M=1, $A_v=(1_N-P_v)\zeta$, and $\zeta_v=(1_N-P_v)\xi$. For almost all finite places we have

$$||A_n||_n = ||\boldsymbol{\xi}_n||_n = 1$$

and therefore $S_v = (O_v)^M$ at almost all finite places. Hence the inequality (2.4) holds. It follows that there exists $\alpha \neq 0$ in k such that $\alpha \in \lambda \mathcal{S}$ for all $\lambda > \lambda_1$. That is,

$$\|(1_N - P_v)\alpha\zeta\|_v \le \lambda_1 \|(1_N - P_v)\xi\|_v$$

if $v \mid \infty$ and

$$\|(\mathbf{1}_N-P_v)\alpha\pmb{\xi}\|_v\leq \|(\mathbf{1}_N-P_v)\pmb{\xi}\|_v$$

if $v \nmid \infty$. Thus we have

$$\prod_{v} \left| (1_N - P_v)(\alpha \boldsymbol{\zeta} + \boldsymbol{\xi}) \right|_v \leq \left\{ \prod_{v \mid \infty} (1 + \lambda_1)^{d_v/d} \right\} \prod_{v} \left| (1_N - P_v) \boldsymbol{\xi} \right|_v,$$

or

(2.5)
$$G(\alpha \zeta + \zeta) \leq (1 + \lambda_1) G(\zeta).$$

Of course (2.4) may be written as

$$\lambda_1 \leq c_{\nu}(1)G(\boldsymbol{\xi})^{-1}G(\boldsymbol{\zeta})$$

and therefore (2.5) implies that

$$G(\alpha \zeta + \zeta) \leq G(\zeta) + c_{\nu}(1)G(\zeta) \leq 2c_{\nu}(1)\max\{G(\zeta), G(\zeta)\}.$$

This proves the lemma.

Let $F(\mathbf{x}, \mathbf{y})$ be the bilinear form defined in (1.1) by the $N \times N$ symmetric matrix $\Phi = (\varphi_{mn})$. At each place v of k the local height \mathscr{H}_v is defined by

$$\begin{split} \mathscr{H}_v(\Phi) &= \max_{1 \leq m, n \leq N} |\varphi_{mn}|_v \quad \text{if } v \nmid \infty \,, \\ \mathscr{H}_v(\Phi) &= \left\{ \sum_{m=1}^N \sum_{n=1}^N \|\varphi_{mn}\|_v^2 \right\}^{d_v/2d} \quad \text{if } v \mid \infty. \end{split}$$

The global height of Φ is then given by

$$\mathscr{H}(\mathbf{\Phi}) = \prod_{v} \mathscr{H}_{v}(\mathbf{\Phi}).$$

If $\boldsymbol{\xi}_{v}$ and $\boldsymbol{\zeta}_{v}$ are vectors in $(k_{v})^{N}$ we have

$$|F(\boldsymbol{\xi}_{v}, \boldsymbol{\zeta}_{v})|_{v} \leq \mathscr{H}_{v}(\boldsymbol{\Phi})|\boldsymbol{\xi}_{v}|_{v}|\boldsymbol{\zeta}_{v}|_{v}.$$

This follows immediately from the ultrametric inequality if $v \nmid \infty$ and from the Cauchy-Schwarz inequality if $v \mid \infty$.

Now suppose that $\boldsymbol{\xi}$ and $\boldsymbol{\zeta}$ are vectors in k^N , F vanishes identically on $\mathscr{A}\subseteq\mathscr{Z}\subseteq k^N$ and $\boldsymbol{\zeta}\in\mathscr{A}^\perp$, where

$$\mathscr{A}^{\perp} = \{ \mathbf{z} \in \mathscr{Z} : F(\mathbf{a}, \mathbf{z}) = 0 \text{ for all } \mathbf{a} \in \mathscr{A} \}.$$

By continuity F vanishes identically on the completion \mathscr{A}_v of \mathscr{A} in $(k_v)^N$. It follows that $F(P_v \xi, \zeta) = 0$ and therefore

(2.7)
$$F(\boldsymbol{\xi}, \boldsymbol{\zeta}) = F((1_N - P_v)\boldsymbol{\xi}, \boldsymbol{\zeta}).$$

If $F(\xi,\zeta) \neq 0$, then (2.6), (2.7) and the product formula imply that

$$\begin{split} 1 &= \prod_v |F(\boldsymbol{\xi}, \boldsymbol{\zeta})|_v \\ &= \prod_v |F((1_N - P_v)\boldsymbol{\xi}, \boldsymbol{\zeta})|_v \\ &\leq \prod_v \left\{ \mathscr{H}_v(\boldsymbol{\Phi}) H_v((1_N - P_v)\boldsymbol{\xi}) H_v(\boldsymbol{\zeta}) \right\} \\ &= \mathscr{H}(\boldsymbol{\Phi}) \left\{ \prod_v H_v((1_N - P_v)\boldsymbol{\xi}) \right\} H(\boldsymbol{\zeta}). \end{split}$$

This type of argument will be used frequently.

3. Two basic theorems

Our proof of Theorem 1 divides naturally into two parts and each part can be easily formulated as a separate result. We assume throughout §§3-6 of this paper that the hypotheses in Theorem 1 hold. Then among all L-dimensional subspaces contained in $\mathcal{Z}^{(0)}$ let \mathcal{Z} be an L-dimensional subspace with minimal height. As the set of L-dimensional subspaces of \mathcal{Z} having height less than a positive constant is a finite set, such a subspace \mathcal{Z} clearly exists. We define

$$\mathscr{Z}^{\perp} = \{ \mathbf{z} \in \mathscr{Z} : F(\mathbf{x}, \mathbf{z}) = 0 \text{ for all } \mathbf{x} \in \mathscr{X} \}.$$

Since F restricted to $\mathscr X$ has rank r > M - L, it follows that $\mathscr X^{\perp}$ is a proper subspace of $\mathscr Z$.

Theorem 4. Suppose that ξ is a vector in $\mathbb{Z}\backslash \mathcal{Z}^{\perp}$ and let \mathcal{Y} be the (L+1)-dimensional subspace

$$\mathcal{Y} = \operatorname{span}_{k} \{ \mathcal{X}, \boldsymbol{\xi} \}.$$

Then there exists a subspace $\mathcal{Z}' \subseteq \mathcal{Y}$ such that

- (i) F vanishes identically on \mathcal{X}' ,
- (ii) $\dim(\mathcal{X}') = L$ and $\dim(\mathcal{X} \cap \mathcal{X}') = L 1$,
- (iii) $H(\mathcal{X})^2 \leq H(\mathcal{X})H(\mathcal{X}') \leq 2\mathcal{X}(\Phi)H(\mathcal{Y})^2$,
- (iv) $1 \le 2\mathcal{H}(\Phi) \{ \prod_{v} H_{v}((1_{N} P_{v})\xi) \}^{2}$,

where $P_v = P_v(\mathcal{X}_v)$ is projection onto the completion \mathcal{X}_v of \mathcal{X} in $(k_v)^N$.

The proof of this result is similar to our proof of [14, Theorem 1]. In fact we have made some technical simplifications which lead to the sharper inequality (1.6).

Theorem 5. There exist M-L linearly independent vectors \mathbf{z}_1 , \mathbf{z}_2 , ..., \mathbf{z}_{M-L} in $\mathcal{Z} \backslash \mathcal{Z}^{\perp}$ such that

$$\mathcal{Z} = \operatorname{span}_{k} \{ \mathcal{X}, \mathbf{z}_{1}, \mathbf{z}_{2}, \dots, \mathbf{z}_{M-L} \},$$

and each of the subspaces

$$(3.2) \mathcal{Y}_l = \operatorname{span}_k \{ \mathcal{X}, \mathbf{z}_l \}, l = 1, 2, \dots, M - L,$$

satisfies

(3.3)
$$H(\mathcal{Y}_l) \le 2c_k(1)\{c_k(M-L)\}^{M-L}\{2\mathcal{H}(\Phi)\}^{(M-L-1)/2}H(\mathcal{Z}).$$

In order to prove Theorem 1 from these results we set $\mathscr{X}=\mathscr{X}_0$. Then with \mathbf{z}_1 , \mathbf{z}_2 ,..., \mathbf{z}_{M-L} as in Theorem 5 we apply Theorem 4 with $\boldsymbol{\xi}=\mathbf{z}_l$. It follows that the subspace $\mathscr{Y}_l=\mathrm{span}\{\mathscr{X}_0,\mathbf{z}_l\}$ contains an L-dimensional subspace $\mathscr{X}_l=\mathscr{X}_l'$ such that $\mathscr{X}_l\subseteq \mathscr{Z}^{(0)}$, $\dim(\mathscr{X}_0\cap\mathscr{X}_l)=L-1$, and

$$\operatorname{span}\{\mathscr{X}_0,\mathscr{X}_1,\ldots,\mathscr{X}_{M-L}\}=\mathscr{Z}.$$

Using (iii) of Theorem 4 we have

(3.4)
$$H(\mathscr{X}_0)^2 \le H(\mathscr{X}_0)H(\mathscr{X}_l) \le 2\mathscr{H}(\Phi)H(\mathscr{Y}_l)^2.$$

Then (3.3) and (3.4) combine to give exactly the estimate (1.2) in the statement of Theorem 1.

4. Proof of Theorem 4

Let $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_L\}$ be a basis for \mathscr{X} . Since $\boldsymbol{\xi} \in \mathscr{Z} \backslash \mathscr{X}^{\perp}$ it follows that (4.1) $F(\mathbf{x}_l, \boldsymbol{\xi}) \neq 0$ for some l, $1 \leq l \leq L$.

Obviously $\{x_1, \ldots, x_I, \xi\}$ is a basis for \mathcal{Y} . Define $\mathcal{X}' \subseteq \mathcal{Y}$ by

$$\mathscr{X}' = \left\{ \sum_{l=1}^L \alpha_l \mathbf{x}_l + \beta \boldsymbol{\xi} \colon \alpha_l \in k \,,\, \beta \in k \,,\, \text{ and } \sum_{l=1}^L \alpha_l F(\mathbf{x}_l \,,\boldsymbol{\xi}) + \frac{1}{2}\beta F(\boldsymbol{\xi}) = 0 \right\}.$$

In view of (4.1), \mathcal{Z}' is a subspace of \mathcal{Y} with

$$\dim(\mathcal{X}') = L$$
 and $\dim(\mathcal{X} \cap \mathcal{X}') = L - 1$.

In particular, \mathscr{Z} and \mathscr{Z}' are distinct subspaces. If

(4.2)
$$\mathbf{y} = \mathbf{x} + \beta \boldsymbol{\xi}, \quad \mathbf{x} \in \mathcal{X}, \ \beta \in k,$$

is a vector in \mathcal{Y} then

(4.3)
$$F(\mathbf{y}) = 2F(\mathbf{x}, \beta \boldsymbol{\xi}) + F(\beta \boldsymbol{\xi}) \\ = 2\beta F(\mathbf{x} + \frac{1}{2}\beta \boldsymbol{\xi}, \boldsymbol{\xi}).$$

This shows that $\beta = 0$ is equivalent to $\mathbf{y} \in \mathcal{X}$ and $F(\mathbf{x} + \frac{1}{2}\beta \boldsymbol{\xi}, \boldsymbol{\xi}) = 0$ is equivalent to $\mathbf{y} \in \mathcal{X}'$. Therefore (i) and (ii) of Theorem 4 hold for the subspace \mathcal{X}' .

At each place v of k let $\mathscr{X}_v \subseteq (k_v)^N$ be the completion of \mathscr{X} and let $\mathscr{X}_v' \subseteq (k_v)^N$ be the completion of \mathscr{X}' . Then set

$$P_v = P_v(\mathscr{X}_v), \qquad P_v' = P_v(\mathscr{X}_v'),$$

and

$$Q_v = \frac{1}{2}(1_N - P_v).$$

By continuity F must vanish identically on $\mathscr{X}_v \cup \mathscr{X}_v'$. With y given by (4.2) we have

$$F(\mathbf{x} + \frac{1}{2}\beta\boldsymbol{\xi}, \boldsymbol{\xi}) = F(\mathbf{x}, \boldsymbol{\xi}) + \frac{1}{2}\beta F(\boldsymbol{\xi})$$

$$= F(\mathbf{x}, (1_N - P_v)\boldsymbol{\xi}) + \frac{1}{2}\beta F((1_N + P_v)\boldsymbol{\xi}, (1_N - P_v)\boldsymbol{\xi})$$

$$= F(Q_v\mathbf{x}, (1_N - P_v)\boldsymbol{\xi}) + F(\beta Q_v\boldsymbol{\xi}, (1_N - P_v)\boldsymbol{\xi})$$

$$= F(Q_v\mathbf{y}, (1_N - P_v)\boldsymbol{\xi}).$$

If we combine (4.3) and (4.4) we find that

(4.5)
$$F(\mathbf{y}) = 2\beta F(Q_n \mathbf{y}, (1_N - P_n)\boldsymbol{\xi})$$

at each place v of k. It follows that $y \in \mathcal{X}'$ if and only if

$$F(Q_{n}\mathbf{y},(1_{N}-P_{n})\xi)=0.$$

Now select $\mathbf{y} \in \mathcal{Y} \setminus (\mathcal{X} \cup \mathcal{X}')$. Then $P'_{\mathbf{y}}\mathbf{y} \in \mathcal{X}'_{\mathbf{y}}$ and so at each place \mathbf{v}

(4.6)
$$F(Q_{n}P'_{n}\mathbf{y},(1_{N}-P_{n})\xi)=0.$$

Combining (4.5) and (4.6) we obtain

(4.7)
$$0 \neq F(\mathbf{y}) = 2\beta F(Q_n(1_N - P'_n)\mathbf{y}, (1_N - P_n)\boldsymbol{\xi}).$$

Next we apply the product formula to (4.7) and use the basic inequality (2.6) at each place. This leads to

$$(4.8) \qquad 1 = \prod_{v} |(2\beta)^{-1} F(\mathbf{y})|_{v}$$

$$\leq \mathcal{H}(\Phi) \left\{ \prod_{v} H_{v}(Q_{v}(1_{N} - P'_{v})\mathbf{y}) \right\} \left\{ \prod_{v} H_{v}((1_{N} - P_{v})\boldsymbol{\xi}) \right\}.$$

By [14, Lemma 8] we may remove the operator Q_v from the right-hand side of (4.8) while compensating with an extra factor of 2. In this way we find that

$$(4.9) 1 \leq 2\mathscr{H}(\boldsymbol{\Phi}) \left\{ \prod_{v} H_{v}((1_{N} - P'_{v})\mathbf{y}) \right\} \left\{ \prod_{v} H_{v}((1_{N} - P_{v})\boldsymbol{\xi}) \right\}.$$

Finally we multiply both sides of (4.9) by $H(\mathcal{X})H(\mathcal{X}')$ and apply (2.1). This establishes the inequality

(4.10)
$$H(\mathcal{X}') \leq 2\mathcal{X}(\Phi)H(\operatorname{span}_{k}\{\mathcal{X}', \mathbf{y}\})H(\operatorname{span}_{k}\{\mathcal{X}, \boldsymbol{\xi}\})$$
$$= 2\mathcal{X}(\Phi)H(\mathcal{Y})^{2},$$

which is exactly the second inequality in (iii) of the theorem.

Now $\mathscr{X} \subseteq \mathscr{Z}^{(0)}$ has minimal height among all L-dimensional subspaces contained in $\mathscr{Z}^{(0)}$. Therefore (4.10) immediately implies that

Of course (4.11) is (iv) and the first inequality in (iii) of the theorem.

5. A NESTED SEQUENCE OF SUBSPACES

In this section we identify several objects connected with F, $\mathscr X$ and $\mathscr X$ which will be used in our proof of Theorem 5. Again we suppose that $\{\mathbf x_1\,,\mathbf x_2\,,\,\ldots\,,\mathbf x_L\}$ is a basis for $\mathscr X$ and we write $P_v=P_v(\mathscr X_v)$ for the projection operator which maps $(k_v)^N$ onto the completion $\mathscr X_v$ of $\mathscr X$ at each place v. To simplify some expressions we write

$$G(\mathbf{z}) = \prod_{v} H_v((1_N - P_v)\mathbf{z})$$

if $z \in \mathcal{Z}$. By [14, Theorem 10] there exists a basis $\{x_1, x_2, \dots, x_L, y_1, y_2, \dots, y_{M-L}\}$ of \mathcal{Z} such that

(5.1)
$$\prod_{l=1}^{M-L} G(\mathbf{y}_l) \le \left\{ c_k(M-L) \right\}^{M-L} H(\mathcal{Z}) H(\mathcal{X})^{-1}.$$

Also, by reordering if necessary, we may assume that the numbers $G(\mathbf{y}_l)$ are increasing for $l=1,2,\ldots,M-L$. We use the vectors in $\{\mathbf{y}_1,\mathbf{y}_2,\ldots,\mathbf{y}_{M-L}\}$ to define a nested sequence of subspaces

$$\mathscr{A}_{l} = \operatorname{span}_{k} \{ \mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{l}, \mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{l} \},$$

for $l = 0, 1, 2, \dots, M - L$. Thus we have

$$\mathscr{X} = \mathscr{A}_0 \subseteq \mathscr{A}_1 \subseteq \mathscr{A}_2 \subseteq \cdots \subseteq \mathscr{A}_{M-1} = \mathscr{Z}.$$

Obviously $\dim(\mathcal{A}_l) = L + l$. For each choice of l = 0, 1, 2, ..., M - L we set

$$\mathscr{A}_{l}^{\perp} = \{ \mathbf{z} \in \mathscr{Z} : F(\mathbf{a}, \mathbf{z}) = 0 \text{ for all } \mathbf{a} \in \mathscr{A}_{l} \}.$$

Clearly each \mathscr{A}_{l}^{\perp} is a subspace of \mathscr{Z} and

$$\mathcal{Z}^{\perp} = \mathcal{A}_{M-L}^{\perp} \subseteq \mathcal{A}_{M-L-1}^{\perp} \subseteq \cdots \subseteq \mathcal{A}_{1}^{\perp} \subseteq \mathcal{A}_{0}^{\perp} = \mathcal{Z}^{\perp} \subseteq \mathcal{Z}.$$

Concerning the dimension of \mathscr{A}_{l}^{\perp} we have

$$\dim(\mathscr{A}_{l}) + \dim(\mathscr{A}_{l}^{\perp}) = \dim(\mathscr{Z}) + \dim(\mathscr{A}_{l} \cap \mathscr{Z}^{\perp}).$$

Since r > M - L it follows that

(5.2)
$$\dim(\mathscr{A}_{l}^{\perp}) \leq \dim(\mathscr{Z}) + \dim(\mathscr{Z}^{\perp}) - \dim(\mathscr{A}_{l})$$
$$= M + (M - r) - (L + l)$$
$$< M - l - 1.$$

The quadratic form F vanishes identically on $\mathscr{Z}=\mathscr{A}_0$ but does not vanish identically on $\mathscr{Z}=\mathscr{A}_{M-L}$. Hence there exists a unique integer s, $0 \le s \le M-L-1$, such that F vanishes identically on \mathscr{A}_s but F does not vanish identically on \mathscr{A}_{s+1} . For the subspace \mathscr{A}_s we must have $\mathscr{A}_s \subseteq \mathscr{A}_s^{\perp}$, and therefore by (5.2)

$$L + s = \dim(\mathscr{A}_s) \le \dim(\mathscr{A}_s^{\perp}) \le M - s - 1.$$

This shows that $0 \le s \le \frac{1}{2}(M - L - 1)$.

Lemma 6. If $y_{s+1} \in \mathscr{A}_s^{\perp}$ then

$$1 \leq \mathscr{H}(\Phi)G(\mathbf{y}_{s+1})^2.$$

Proof. By the definition of s, F does not vanish identically on

$$\mathscr{A}_{s+1} = \operatorname{span}_{k} \{ \mathscr{A}_{s}, \mathsf{y}_{s+1} \}.$$

But

(5.3)
$$F(\mathbf{a}) = 0 \text{ and } F(\mathbf{a}, \mathbf{y}_{s+1}) = 0$$

for all $\mathbf{a} \in \mathscr{A}_s$. It follows that $F(\mathbf{y}_{s+1}) \neq 0$. Also, (5.3) implies that at each place v

$$F(P_{v}\mathbf{y}_{s+1}) = 0$$
 and $F(P_{v}\mathbf{y}_{s+1}, \mathbf{y}_{s+1}) = 0$.

Therefore, we have

$$F(\mathbf{y}_{s+1}) = F((1_N - P_v)\mathbf{y}_{s+1}, \mathbf{y}_{s+1})$$

= $F((1_N - P_v)\mathbf{y}_{s+1}).$

We apply (2.6) and the product formula to conclude that

$$\begin{split} 1 &= \prod_{v} \left| F(\mathbf{y}_{s+1}) \right|_{v} \\ &= \prod_{v} \left| F((1_{N} - P_{v}) \mathbf{y}_{s+1}) \right|_{v} \\ &\leq \mathscr{H}(\Phi) G(\mathbf{y}_{s+1})^{2}. \end{split}$$

Lemma 7. Suppose that $1 \leq s$ and ξ is a vector in $\mathcal{Z} \backslash \mathscr{A}_s^{\perp}$. Let m be the smallest integer in the set $\{1, 2, \ldots, s\}$ such that ξ is contained in $\mathcal{Z} \backslash \mathscr{A}_m^{\perp}$. Then we have

(5.4)
$$1 \leq \mathcal{H}(\mathbf{\Phi})G(\mathbf{y}_m)G(\boldsymbol{\xi}).$$

Proof. First we assume that m = 1. Then $\xi \in \mathcal{Z} \setminus \mathscr{A}_1^{\perp}$ and therefore the linear form $\mathbf{a} \to F(\mathbf{a}, \xi)$ is not trivial on \mathscr{A}_1 . It follows that

$$\mathscr{B}_0 = \{ \mathbf{a} \in \mathscr{A}_1 \colon F(\mathbf{a}, \boldsymbol{\xi}) = 0 \}$$

is an L-dimensional subspace of \mathscr{A}_1 . As $1 \le s$, F vanishes identically on \mathscr{A}_1 and also on \mathscr{B}_0 . Since $\mathscr{X} = \mathscr{A}_0$ has minimal height among the L-dimensional subspaces in $\mathscr{Z}^{(0)}$, we have

$$(5.5) H(\mathscr{A}_0) \le H(\mathscr{B}_0).$$

Now let $\zeta \in \mathscr{A}_1 \backslash \mathscr{B}_0$ so that $F(\zeta, \zeta) \neq 0$. From the definition of \mathscr{B}_0 we have

(5.6)
$$F(P_v(\mathscr{Z}_0)\zeta, \zeta) = 0$$

at each place v. Since F vanishes identically on \mathscr{A}_1 we also have

$$(5.7) F((1_N - P_n(\mathscr{Z}_0))\zeta, P_n(\mathscr{Z}_0)\xi) = 0.$$

Using (5.6) and (5.7) we obtain the identity

$$F(\zeta, \xi) = F((1_N - P_v(\mathscr{B}_0))\zeta, \xi)$$

= $F((1_N - P_v(\mathscr{B}_0))\zeta, (1_N - P_v(\mathscr{A}_0))\xi)$

at each place v . Again we apply (2.6) and the product formula to conclude that

$$(5.8) \qquad 1 = \prod_{v} |F(\zeta, \xi)|_{v}$$

$$\leq \mathcal{H}(\Phi) \left\{ \prod_{v} H_{v}((1_{N} - P_{v}(\mathscr{B}_{0}))\zeta) \right\} \left\{ \prod_{v} H_{v}((1_{N} - P_{v}(\mathscr{A}_{0}))\xi) \right\}.$$

Next we multiply both sides of (5.8) by $H(\mathcal{B}_0)$ and use (2.1) and (5.5). In this way we obtain

$$\begin{split} H(\mathscr{A}_0) & \leq H(\mathscr{B}_0) \leq \mathscr{H}(\Phi) H(\mathscr{A}_1) \left\{ \prod_v H_v((1_N - P_v(\mathscr{A}_0)) \xi) \right\} \\ & = \mathscr{H}(\Phi) H(\mathscr{A}_0) \left\{ \prod_v H_v((1_N - P_v(\mathscr{A}_0)) \mathbf{y}_1) \right\} \left\{ \prod_v H_v((1_N - P_v(\mathscr{A}_0)) \xi) \right\} \,, \end{split}$$

which is (5.4) when m = 1.

To complete the proof we consider the case $2 \le m \le s$. Then $\xi \in \mathcal{Z} \setminus \mathcal{A}_m^{\perp}$ and $\xi \in \mathcal{A}_{m-1}^{\perp}$. Again the linear form $\mathbf{a} \to F(\mathbf{a}, \xi)$ is not trivial on \mathcal{A}_m so that

$$\{\mathbf{a} \in \mathscr{A}_m \colon F(\mathbf{a}, \boldsymbol{\xi}) = 0\}$$

is an (L+m-1)-dimensional subspace of \mathscr{A}_m . On the other hand, $\mathscr{A}_{m-1}\subseteq \mathscr{A}_m$, $\xi\in \mathscr{A}_{m-1}^\perp$ and therefore $\mathbf{a}\to F(\mathbf{a},\xi)$ is identically zero on \mathscr{A}_{m-1} . In other words,

$$\mathscr{A}_{m-1} = \{\mathbf{a} \in \mathscr{A}_m \colon F(\mathbf{a}, \boldsymbol{\xi}) = 0\}.$$

The vector \mathbf{y}_m is in $\mathscr{A}_m \setminus \mathscr{A}_{m-1}$ and therefore $F(\mathbf{y}_m, \boldsymbol{\xi}) \neq 0$. As in the first part of the proof we have

(5.9)
$$F(\mathbf{y}_m, \boldsymbol{\xi}) = F((1_N - P_v(\mathscr{A}_0))\mathbf{y}_m, \boldsymbol{\xi}) \\ = F((1_N - P_v(\mathscr{A}_0))\mathbf{y}_m, (1_N - P_v(\mathscr{A}_0))\boldsymbol{\xi}).$$

Using (2.1), (5.9) and the product formula we find that

$$1 = \prod_{v} |F(\mathbf{y}_m, \boldsymbol{\xi})|_v \le \mathscr{H}(\boldsymbol{\Phi})G(\mathbf{y}_m)G(\boldsymbol{\xi}).$$

This proves the lemma.

Lemma 8. The vectors $\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_{M-L-1}$ satisfy

(5.10)
$$1 \le \left\{2\mathcal{H}(\mathbf{\Phi})\right\}^{(M-L-1)/2} \prod_{l=1}^{M-L-1} G(\mathbf{y}_l).$$

The vector \mathbf{y}_{M-1} satisfies

(5.11)
$$G(\mathbf{y}_{M-L}) \le \left\{ c_k(M-L) \right\}^{M-L} \left\{ 2\mathscr{H}(\Phi) \right\}^{(M-L-1)/2} H(\mathscr{Z}) H(\mathscr{Z})^{-1}.$$

Proof. The inequalities (5.1) and (5.10) clearly imply that (5.11) holds. Therefore it suffices to establish only (5.10). First we consider the case s = 0. If $\mathbf{y}_1 \in \mathscr{A}_0^{\perp}$ then

$$1 \leq \mathcal{X}(\mathbf{\Phi})G(\mathbf{y}_1)^2$$

holds by Lemma 6. If $\mathbf{y}_1 \in \mathcal{Z} \setminus \mathcal{Z}_0^{\perp}$ we may appeal to Theorem 4 part (iv) with $\boldsymbol{\xi} = \mathbf{y}_1$. We find that

$$(5.12) 1 \leq 2\mathcal{H}(\mathbf{\Phi})G(\mathbf{y}_1)^2.$$

Thus (5.12) holds generally if s = 0. Since the numbers $G(\mathbf{y}_l)$ are increasing for l = 1, 2, ..., M - L, the desired inequality (5.10) follows immediately.

For the remainder of the proof we assume that $1 \le s$. Let $0 \le l \le s$ so that

$$\mathscr{A}_l \subseteq \mathscr{A}_s \subseteq \mathscr{A}_s^{\perp} \subseteq \mathscr{A}_l^{\perp}.$$

In particular,

$$\mathscr{A}_{s} = \operatorname{span}_{k} \{\mathscr{A}_{0}, \mathbf{y}_{1}, \ldots, \mathbf{y}_{s}\} \subseteq \mathscr{A}_{l}^{\perp}$$

and $\dim(\mathscr{A}_l^\perp) \leq M-l-1$ by (5.2). It follows that at most M-L-s-l-1 of the vectors in the set $\{\mathbf{y}_{s+1},\mathbf{y}_{s+2},\ldots,\mathbf{y}_{M-L}\}$ are also in \mathscr{A}_l^\perp . Alternatively, at least l+1 vectors in the set $\{\mathbf{y}_{s+1},\mathbf{y}_{s+2},\ldots,\mathbf{y}_{M-L}\}$ are also in $\mathscr{Z}\backslash\mathscr{A}_l^\perp$. Hence we may select distinct integers i_0,i_1,\ldots,i_s in $\{s+1,s+2,\ldots,M-L\}$ so that

$$\{\mathbf{y}_{i_0}, \mathbf{y}_{i_1}, \dots, \mathbf{y}_{i_t}\} \subseteq \mathcal{Z} \backslash \mathscr{A}_t^{\perp}$$

for each $l=0,1,2,\ldots,s$. By removing \mathbf{y}_{M-L} if necessary, we may select distinct integers j_1, j_2, \ldots, j_s in the set $\{s+1, s+2, \ldots, M-L-1\}$ so that

$$\{\mathbf{y}_{i_1},\mathbf{y}_{i_2},\ldots,\mathbf{y}_{i_l}\}\subseteq \mathcal{Z}\backslash \mathscr{A}_l^{\perp}$$

for $l=1,2,\ldots,s$. Since $\mathscr{Z}\backslash\mathscr{A}_l^\perp\subseteq\mathscr{Z}\backslash\mathscr{A}_s^\perp$ the hypotheses of Lemma 7 hold with $\boldsymbol{\xi}=\mathbf{y}_{j_l}$. The corresponding value of m plainly satisfies $1\leq m\leq l$. Thus by Lemma 7 we have

$$(5.13) 1 \leq \mathscr{H}(\Phi)G(\mathbf{y}_m)G(\mathbf{y}_{j_l}) \leq \mathscr{H}(\Phi)G(\mathbf{y}_l)G(\mathbf{y}_{j_l}),$$

for each $l = 1, 2, \ldots, s$.

Next we claim that

$$(5.14) 1 \leq \mathcal{H}(\mathbf{\Phi})G(\mathbf{y}_{c+1})^2.$$

If $\mathbf{y}_{s+1} \in \mathscr{A}_s^{\perp}$ then this follows from Lemma 6. If $\mathbf{y}_{s+1} \in \mathscr{Z} \setminus \mathscr{A}_s^{\perp}$ we may apply Lemma 7 with $\boldsymbol{\xi} = \mathbf{y}_{s+1}$. Then we use the trivial inequality $G(\mathbf{y}_m) \leq G(\mathbf{y}_{s+1})$ (where $1 \leq m \leq s$) to deduce that (5.14) holds in this case as well.

Now suppose that t is an integer, $s+1 \le t \le M-L-1$, but t is *not* in the set $\{j_1, j_2, \ldots, j_s\}$. Obviously $G(\mathbf{y}_{s+1}) \le G(\mathbf{y}_t)$ and therefore (5.14) implies that

$$(5.15) 1 \leq \mathcal{X}(\Phi)G(\mathbf{y}_{\bullet})^2.$$

There are M-L-2s-1 such integers t so that (5.15) leads to the inequality

$$(5.16) 1 \leq \mathscr{H}(\mathbf{\Phi})^{(M-L-1)/2-s} \prod_{t} G(\mathbf{y}_{t}).$$

From (5.13) we have

(5.17)
$$1 \leq \mathcal{H}(\mathbf{\Phi})^{s} \left\{ \prod_{l=1}^{s} G(\mathbf{y}_{l}) G(\mathbf{y}_{j_{l}}) \right\}.$$

Finally, the inequalities (5.16) and (5.17) combine to establish (5.10).

6. Proof of Theorem 5

We have already seen that there exists an integer i_0 , $s+1 \le i_0 \le M-L$, such that \mathbf{y}_{i_0} is contained in $\mathscr{Z} \backslash \mathscr{A}_0^\perp = \mathscr{Z} \backslash \mathscr{Z}^\perp$. Using \mathbf{y}_{i_0} and the linearly independent vectors $\{\mathbf{y}_1,\mathbf{y}_2,\ldots,\mathbf{y}_{M-L}\}$ we define a second set of linearly independent vectors $\{\mathbf{z}_1,\mathbf{z}_2,\ldots,\mathbf{z}_{M-L}\}$ as follows.

- (i) If $\mathbf{y}_l \in \mathcal{Z} \backslash \mathcal{X}^{\perp}$ we set $\mathbf{z}_l = \mathbf{y}_l$.
- (ii) If $\mathbf{y}_i \in \mathcal{X}^{\perp}$ we select a scalar $\alpha_i \neq 0$ in k such that

$$G(\alpha_l \mathbf{y}_l + \mathbf{y}_{i_0}) \le 2c_k(1) \max\{G(\mathbf{y}_l), G(\mathbf{y}_{i_0})\}.$$

That such a scalar $\alpha_l \neq 0$ exists follows from Lemma 3. Then we set $\mathbf{z}_l = \alpha_l \mathbf{y}_l + \mathbf{y}_{i_0}$.

It is clear that

$$span_{k} \{ \mathbf{y}_{1}, \mathbf{y}_{2}, \dots, \mathbf{y}_{M-L} \} = span_{k} \{ \mathbf{z}_{1}, \mathbf{z}_{2}, \dots, \mathbf{z}_{M-L} \}$$

and therefore (3.1) holds. Also, each vector \mathbf{z}_i is in $\mathcal{Z} \setminus \mathcal{Z}^{\perp}$.

To complete the proof we note that

$$(6.1) G(\mathbf{z}_l) \le 2c_k(1)G(\mathbf{y}_{M-L})$$

for each l, $1 \le l \le M - L$. If \mathcal{Y}_l is defined by (3.2) then

(6.2)
$$H(\mathscr{Y}_l) = H(\mathscr{X})G(\mathbf{z}_l).$$

The inequality (3.3) plainly follows from (5.11), (6.1) and (6.2).

7. Proof of Theorem 2

Since the rank of F restricted to \mathcal{Z} is r there exists a subspace $\mathcal{Y} \subseteq \mathcal{Z}$ such that \mathcal{Y} has dimension r and F restricted to \mathcal{Y} is nonsingular. By Theorem 10 of [14] there exists a basis $\{\mathbf{y}_1, \mathbf{y}_2, \ldots, \mathbf{y}_r\}$ of \mathcal{Y} for which

(7.1)
$$\prod_{l=1}^{r} \left\{ \prod_{v} H_{v} \{ (1_{N} - P_{v}(\mathcal{Z}^{\perp})) \mathbf{y}_{l} \} \right\} \leq c_{k}(r)^{r} H(\mathcal{Z}) H(\mathcal{Z}^{\perp})^{-1}.$$

Let

$$Y = (\mathbf{y}_1 \mathbf{y}_2 \cdots \mathbf{y}_r)$$

denote the $N \times r$ matrix having y_l as its lth column, $1 \le l \le r$. We must have

$$\det\{Y^T \Phi Y\} \neq 0,$$

and therefore when we expand the determinant

(7.2)
$$\sum_{\sigma} \operatorname{sgn}(\sigma) \prod_{l=1}^{r} F(\mathbf{y}_{l}, \mathbf{y}_{\sigma(l)}) \neq 0.$$

In (7.2) the sum is over all permutations σ of the set $\{1, 2, ..., r\}$. It follows that there exists a permutation τ of the set $\{1, 2, ..., r\}$ such that

$$\prod_{l=1}^r F(\mathbf{y}_l, \mathbf{y}_{\tau(l)}) \neq 0.$$

Using (2.1) and the product formula we find that

(7.3)
$$1 = \prod_{l=1}^{r} \left\{ \prod_{v} |F(\mathbf{y}_{l}, \mathbf{y}_{\tau(l)})|_{v} \right\}$$

$$= \prod_{l=1}^{r} \left\{ \prod_{v} |F((\mathbf{1}_{N} - P_{v}(\mathcal{Z}^{\perp}))\mathbf{y}_{l}, (\mathbf{1}_{N} - P_{v}(\mathcal{Z}^{\perp}))\mathbf{y}_{\tau(l)})|_{v} \right\}$$

$$\leq \prod_{l=1}^{r} \{ \mathcal{H}(\mathbf{\Phi})G(\mathbf{y}_{l})G(\mathbf{y}_{\tau(l)}) \}$$

$$= \mathcal{H}(\mathbf{\Phi})^{r} \prod_{l=1}^{r} G(\mathbf{y}_{l})^{2},$$

where we have written

$$G(\mathbf{x}) = \prod_v H_v\{(1_N - P_v(\mathcal{Z}^{\perp}))\mathbf{x}\}.$$

Finally, from (7.1) and (7.3) we obtain the inequality

$$1 \leq \mathcal{H}(\mathbf{\Phi})^r \{ c_k(r)^r H(\mathcal{Z}) H(\mathcal{Z}^{\perp})^{-1} \}^2,$$

which is the statement of the theorem.

REFERENCES

- B. J. Birch and H. Davenport, Quadratic equations in several variables, Proc. Cambridge Philos. Soc. 54 (1958), 135-138.
- 2. E. Bombieri and J. Vaaler, On Siegel's lemma, Invent. Math. 73 (1983), 11-32.
- 3. J. W. S. Cassels, Bounds for the least solution of homogeneous quadratic equations, Proc. Cambridge Philos. Soc. 51 (1955), 262-264.
- Addendum to the paper. Bounds for the least solution of homogeneous quadratic equations, Proc. Cambridge Philos. Soc. 52 (1956), 604.

- 5. J. H. H. Chalk, Linearly independent zeros of quadratic forms over number fields, Monatsh. Math. 90 (1980), 13-25.
- 6. H. Davenport, Note on a theorem of Cassels, Proc. Cambridge Philos. Soc. 53 (1957), 539-540.
- 7. ____, Homogeneous quadratic equations, Mathematika 18 (1971), 1-4.
- 8. S. Raghaven, Bounds of minimal solutions of diophantine equations, Nachr. Akad. Wiss. Gottingen Math. Phys. Kl. 9 (1975), 109-114.
- 9. H. P. Schlickewei, Kleine Nullstellen homogener quadratischer Gleichungen, Monatsh. Math. 100 (1985), 35-45.
- 10. H. P. Schlickewei and W. M. Schmidt, Quadartic geometry of numbers, Trans. Amer. Math. Soc. 301 (1987), 679-690.
- 11. W. M. Schmidt, On heights of algebraic subspaces and diophantine approximations, Ann. of Math. 85 (1967), 430-472.
- 12. ____, Small zeros of quadratic forms, Trans. Amer. Math. Soc. 291 (1985), 87-102.
- 13. R. Schulze-Pillot, Small linearly independent zeros of quadratic forms, Monatsh. Math. 95 (1983), 241-249.
- 14. J. D. Vaaler, Small zeros of quadratic forms over number fields, Trans. Amer. Math. Soc. 302 (1987), 281-296.
- 15. G. L. Watson, Least solution of homogeneous quadratic equations, Proc. Cambridge Philos. Soc. 53 (1956), 541-543.

Department of Mathematics, The University of Texas at Austin, Austin, Texas 78712